Local linear regression for functional predictor and scalar response
نویسندگان
چکیده
منابع مشابه
Selection Model in Functional Linear Regression Models for Scalar Response
The so-called Functional Linear Regression model consists in explaining a scalar response by a regressor which is a random function observed on a compact subset of R: in this context, the “parameter” of linear model is a function of the weights. In order to estimate this functional coefficient some estimators such as Functional Principal Component Regression Estimator, Smooth Principal Componen...
متن کاملSpline Estimator for the Functional Linear Regression with Functional Response
The article is devoted to a regression setting where both, the response and the predictor, are random functions defined on some compact sets of R. We consider functional linear (auto)regression and we face the estimation of a bivariate functional parameter. Conditions for existence and uniqueness of the parameter are given and an estimator based on a B-splines expansion is proposed using the pe...
متن کاملLocal Linear Functional Regression based on Weighted Distance-Based Regression
We consider the problem of nonparametrically predicting a scalar response variable y from a functional predictor χ. We have n observations (χi, yi) and we assign a weight wi ∝ K (d(χ, χi)/h) to each χi, where d( · , · ) is a semi-metric, K is a kernel function and h is the bandwidth. Then we fit a Weighted (Linear) Distance-Based Regression, where the weights are as above and the distances are ...
متن کاملA WEIGHTED LINEAR REGRESSION MODEL FOR IMPERCISE RESPONSE
A weighted linear regression model with impercise response and p-real explanatory variables is analyzed. The LR fuzzy random variable is introduced and a metric is suggested for coping with this kind of variables. A least square solution for estimating the parameters of the model is derived. The result are illustrated by the means of some case studies.
متن کاملDistance-based local linear regression for functional predictors
The problem of nonparametrically predicting a scalar response variable from a functional predictor is considered. A sample of pairs (functional predictor and response) is observed. When predicting the response for a new functional predictor value, a semi-metric is used to compute the distances between the new and the previously observed functional predictors. Then each pair in the original samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2009
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2008.03.008